

0278-4343(94)00058-1

## Acoustic scattering from zooplankton and micronekton in relation to a whale feeding site near Georges Bank and Cape Cod

MICHAEL C. MACAULAY,\* KAREN F. WISHNER† and KENDRA L. DALY‡

(Received 7 June 1993; in revised form 1 March 1994; accepted 15 May 1994)

Antwast This research was nort of the Power Channel Assan Bradwativity Dynamimant (SOA

PEX), a multidisciplinary study to investigate the biological and physical processes associated with the very bish annual springtime abundance of right wholes (Fundance algorithm) in the Great South

small region in the northern part of the GSC. Virtually the entire known northwest Atlantic population of the right whale (Eubalaena glacialis), an endangered species, may be found within the GSC at this time (KENNEY et al., 1995). We hypothesized that this privention of right wholes in the CSC during spring warding to an unit ~**1**\_\_\_ 

| ·   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| ·   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|     | and/or degree of aggregation of their principal prey, the copepod <i>Calanus finmarchicus</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4        |
| 1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| _   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| f 7 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| -   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ¥        |
| •   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u> |
| r . |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
| -   | adalament C. Communication in the CCC communication in the state in th | 1        |
| e   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4        |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |

| copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> ,<br>1969) and <i>C. finmarchicus</i> in the Gulf of Maine (Kostow, personal communication). We<br>used this frequency in all three studies and were able to detect layers of copepods and other<br>targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In<br>the detection of the detect layers of | copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARACLOUGH <i>et al.</i> ,<br>1969) and <i>C. finnarchicus</i> in the Gulf of Maine (Kostow, personal Communication). We<br>used this frequency in all three studies and were able to detect layers of copepods and other<br>targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In<br>the this detection (1900)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tarrests of interest. This presses indicated that 200 LTTs would detect concentrations of                                                                                                       |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARACLOUGH <i>et al.</i> ,<br>1969) and <i>C. finmarchicus</i> in the Gulf of Maine (Kostow, personal communication). We<br>used this frequency in all three studies and were able to detect layers of copepods and other<br>targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In<br>the detected of 1900 and the studies of the constant of 100 HW (constant)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (Kostow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In the Ability of the comment of 100 Marchicus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                 |  |
| copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> ,<br>1969) and <i>C. finnarchicus</i> in the Gulf of Maine (Kost.ow, personal communication). We<br>used this frequency in all three studies and were able to detect layers of copepods and other<br>targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In<br>the state of 100 Notes and the studies and the state of the Notes and the state of the Notes and the state of the Notes and the state of the state of the Notes and the state of the Notes                                                                                                                                    |                                                                                                                                                                                                 |  |
| copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We used this frequency in all three studies and were able to detect largets of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> ,<br>1969) and <i>C. finnarchicus</i> in the Gulf of Maine (Kostow, personal communication). We<br>used this frequency in all three studies and were able to detect layers of copepods and other<br>targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In<br>the studies are studies and the studies are studies are studies at the studies are studies are studies are studies at the studies are studies are studies at the studies at the studies are studies at the studies at                                                                                                                                   |                                                                                                                                                                                                 |  |
| copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (Kostow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARAACLOUGH <i>et al.</i> ,<br>1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We<br>used this frequency in all three studies and were able to detect layers of copepods and other<br>targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In<br>the this detected (2000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                 |  |
| copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (Kostow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRALOUGH <i>et al.</i> ,<br>1969) and <i>C. finmarchicus</i> in the Gulf of Maine (Kostow, personal communication). We<br>used this frequency in all three studies and were able to detect layers of copepods and other<br>targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In<br>the detect layers of the two frequency is a small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In<br>the detect layers of the two frequency is a small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In<br>the detect layers of the two frequency is a small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In<br>the detect layers of the two frequency is a small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In<br>the detect layers of the two frequency is a small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In<br>the detect layers of the two frequency is a small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In<br>the detect layers of the two frequency is a small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In<br>the detect layers of the two frequency is a small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In<br>the detect layers of the two frequency is a small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In<br>the detect layers of the two frequency is a small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In<br>the detect layers of the two frequency is a small as 1 mm where they were abundant (more than 100 individuals per mall as 1 mm where they were abundant (more than 100 individuals per mall as 1 mm where they were abundant (more than 100 individuals per mall as 1 mm where they were abundant (more than 100 individuals per mall as 1 mm where the |                                                                                                                                                                                                 |  |
| copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (Kostow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                 |  |
| copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                 |  |
| copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KOSLOW, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                 |  |
| copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> ,<br>1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We<br>used this frequency in all three studies and were able to detect layers of copepods and other<br>targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In<br>the third extended (1900) and the targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> ,<br>1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We<br>used this frequency in all three studies and were able to detect layers of copepods and other<br>targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In<br>the abind state (1980) and the studies of the state state of the LUCE state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                 |  |
| copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In the other data data data data data data data dat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                 |  |
| copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                 |  |
| copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (Kostow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                 |  |
| copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                 |  |
| copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> ,<br>1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We<br>used this frequency in all three studies and were able to detect layers of copepods and other<br>targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In<br>the third start (1990)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                 |  |
| copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> ,<br>1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We<br>used this frequency in all three studies and were able to detect layers of copepods and other<br>targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In<br>the chicken detect 1200 and the statement of the LM and the statement of the statement of the LM and the statement of the LM and the statement of the LM and the statement of the statement of the LM and the statement of the LM and the statement of the LM and the statement of the                                                                                                                                   |                                                                                                                                                                                                 |  |
| copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                 |  |
| copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (Kostow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KOSLOW, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In the other targets are the detect layers of the latest detect layers detect layers at the latest detect layers detect layers at the latest detect layers detect layers at the latest detect layers det                                                                                                                                          |                                                                                                                                                                                                 |  |
| copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                 |  |
| copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                 |  |
| copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                 |  |
| copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (Koslow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | copepods and also be capable of censusing other targets at the depth ranges anticipated.<br>This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In the third studies (1980) and the target bits are been studied as the target of the target studies and the target of the target studies and the target studies are been studies are been studies and the target studies are been stu                                                                                                                                          |                                                                                                                                                                                                 |  |
| This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | This frequency had been used effectively to detect large copepods (BARRACLOUGH <i>et al.</i> , 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | copends and also be capable of censusing other targets at the depth ranges anticipated                                                                                                          |  |
| 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We used this frequency in all three studies and were able to detect layers of copepods and other targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1969) and <i>C. finmarchicus</i> in the Gulf of Maine (KosLow, personal communication). We<br>used this frequency in all three studies and were able to detect layers of copepods and other<br>targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In<br>the third of 1900 and the target is a start of the target is a small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | This frequency had been used effectively to detect large copepods (BARRACLOUGH et al.,                                                                                                          |  |
| used this frequency in all three studies and were able to detect layers of copepods and other<br>targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | used this frequency in all three studies and were able to detect layers of copepods and other<br>targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>3</sup> ). In<br>the third start (1990)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1969) and C. finmarchicus in the Gulf of Maine (Koslow, personal communication). We                                                                                                             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | used this frequency in all three studies and were able to detect layers of copepods and other to react a second loss 1 mm where they were chundent (more then 100 individuals nor $m^{3}$ ). In |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | targets as small as 1 mm where they were abundant (more than 100 individuals per m <sup>-</sup> ). In                                                                                           |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                 |  |

\_

|            |             | T-1.1 7              | <b>x</b> 1       | , i         |             |        |                      | J            |                  |                |              |            |               | ·              |   |
|------------|-------------|----------------------|------------------|-------------|-------------|--------|----------------------|--------------|------------------|----------------|--------------|------------|---------------|----------------|---|
| e          |             |                      |                  |             |             |        |                      |              |                  |                |              |            |               |                |   |
| <b>,</b>   |             |                      |                  |             |             |        |                      |              |                  |                |              |            |               |                |   |
|            |             |                      |                  |             |             |        |                      |              |                  |                |              |            |               |                |   |
|            |             |                      |                  |             |             |        |                      |              |                  |                |              |            |               |                |   |
|            |             |                      |                  |             |             |        |                      |              |                  |                |              |            |               |                |   |
|            |             |                      |                  |             |             |        |                      |              |                  |                |              |            |               |                |   |
|            |             |                      |                  |             |             |        |                      |              |                  |                |              |            |               |                |   |
|            |             |                      |                  |             | 1           |        |                      |              |                  |                |              |            |               |                | 1 |
| [in.       |             |                      |                  |             | 1           |        |                      |              |                  |                |              |            |               |                |   |
| <u>.</u>   |             |                      |                  |             |             |        |                      |              |                  |                |              |            |               |                | k |
| -<br>(     |             |                      |                  |             |             |        |                      |              |                  |                |              |            |               |                |   |
|            |             | •                    |                  |             |             |        |                      |              |                  |                |              |            |               |                |   |
|            |             |                      |                  |             |             |        |                      |              |                  |                |              |            |               |                |   |
| * <u>.</u> |             |                      |                  |             |             |        |                      |              |                  |                |              |            |               |                | 4 |
|            |             |                      |                  |             |             |        |                      |              |                  |                |              |            |               |                |   |
|            | Classif     | ied                  |                  |             |             |        |                      |              |                  |                |              |            |               |                |   |
|            | Case        | ID                   | GMT              | WNW         | DN          | Dive   | СРК                  | CPZ          | EUP              | EUZ            | <br>CP50     | EU50       | AZ            | ACOUS          |   |
|            | 1           | M706                 | 173.05           | N!          | N           | d      | 2572                 | 5            | 2/1              | 51             | 2752         | 21         | 11            | 2100           |   |
| ,          |             |                      |                  |             |             |        |                      |              |                  |                |              |            |               |                |   |
|            |             |                      |                  |             |             |        |                      |              |                  |                |              |            |               |                |   |
|            |             |                      |                  |             |             |        |                      |              |                  |                |              |            |               |                |   |
|            | 2           | M707                 | 123.15           | N           | D           | d      | 1062                 | 28           | 5                | 25             | 1062         | 5          | 12            | 970            |   |
|            | 3<br>4<br>5 | M713<br>M714<br>M715 | 125.17<br>126.05 | N<br>N<br>W | N<br>D<br>N | d<br>D | 2116<br>2339<br>2472 | 2<br>3<br>83 | 00<br>1188<br>47 | 90<br>19<br>24 | 2116<br>2339 | 1188<br>47 | 14<br>13<br>8 | 2400<br>24_020 |   |
| <b>.</b>   | ,<br>(      |                      | 127.17           | <br>        |             | 5      | 2472<br>1501         | 00           | +/<br>^          | 24<br>00       | 4501         | 47         | 15            | 24,020         |   |
| 1          |             |                      |                  |             |             |        |                      |              |                  |                |              |            |               |                |   |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | , |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
| * <u>a</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | * |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | _ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
| ····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
| n - Fristmann Brann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
| <sup>ኛ</sup> የ <sub>በመዝ</sub> ም የተሰራ ነ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | 4 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
| <u>ka</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
| د.<br>۱۳۰۰                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |
| Far an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
| The second secon |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
| e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |   |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
| · _ • ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | 4 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
| M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
| 2. <sup>6</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |   |

Acquistic scattering from marlankton and micronakton

510

| _                                     | Acoustic scattering from zooplankton and micronekton | 521 |
|---------------------------------------|------------------------------------------------------|-----|
|                                       | •                                                    |     |
|                                       |                                                      |     |
|                                       |                                                      |     |
| . ing                                 |                                                      |     |
|                                       |                                                      |     |
| Y                                     |                                                      |     |
| <b>a</b>                              |                                                      |     |
| - <u></u>                             |                                                      |     |
| ·                                     |                                                      |     |
| ,                                     |                                                      |     |
| 4                                     | _                                                    | 1   |
|                                       |                                                      |     |
| نة<br>                                |                                                      |     |
|                                       |                                                      |     |
|                                       |                                                      |     |
| <u>t</u>                              |                                                      |     |
| łą                                    |                                                      |     |
| <u> </u>                              |                                                      |     |
| ·····                                 |                                                      |     |
|                                       |                                                      |     |
| · · · · · · · · · · · · · · · · · · · |                                                      |     |
| <u> </u>                              |                                                      |     |
|                                       |                                                      |     |
|                                       |                                                      |     |
|                                       |                                                      |     |
| <u></u>                               |                                                      |     |
|                                       |                                                      |     |
| 1                                     |                                                      |     |
|                                       |                                                      |     |
| - <del> </del>                        |                                                      |     |
|                                       |                                                      |     |
| م المستاد<br>م الستاد<br>م الم        |                                                      |     |
|                                       |                                                      |     |
|                                       |                                                      |     |
|                                       |                                                      |     |
|                                       |                                                      |     |
|                                       |                                                      |     |

| Eig., 10 Distribution of connects and tanned whale track showing the relation of a tanged right       |                                                   | $A^{1}$ , $S^{3}$<br>$Z$ , $A^{1}$ , $S^{1}$<br>$Z$ , $A^{1}$ , $S^{2}$<br>$Z$ , $A^{2}$ |   |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Ein 10 Distribution of consold and tanged whale track chowing the relation of a tanged right          | · · · · · · · · · · · · · · · · · · ·             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| Eig_10 Distribution of cononods and tagged whale track-showing the relation of a tagged right         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s |
| En 10 Distribution of cononods and tanged whale track-chowing the relation of a taggod right          | · · · · · · · · · · · · · · · · · · ·             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _ |
| Eig. 10 Distribution of concerneds and tagged whale track_showing the relation of a tagged right      | · · · ·                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| Eig_10 Distribution of conenads and taured whale track-showing the relation of a taured right         | · <del>· · · · · · · · · · · · · · · · · · </del> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| Tin_10 Dietribution of concords and tanned whale track-showing the relation of a tagged right         | ×                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| En_10 Distribution of cononads and tanned whale track-showing the relation of a tagged right          |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| En_10 Distribution of concords and tauned whale track-showing the relation of a tagged right          |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| Ein_10 Distribution of concords and tanged whale track-showing the relation of a tagged right         |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _ |
| Ein_10 Distribution of concords and tanged whale track-showing the relation of a tagged right         | ,<br>,                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| Fig. 10 — Distribution of concords and taxoed whale track-showing the relation of a taxoed right      |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
| $E_{0,1}^{i}$ Distribution of conceases and tanged whale track-showing the relation of a tanged right |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |
|                                                                                                       | <u> </u>                                          | $E_{0,1}(0)$ = Distribution of conenade and tanged whale track-showing the relation of a tanged right                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   |











D.F. = degrees of freedom.

|                                       |              | <u>Tahle 8</u> | Niscriminant f | unction analysi | is of hiomass | narameters us | ino data cla | essified as w | hale or no | n-whale to |             |
|---------------------------------------|--------------|----------------|----------------|-----------------|---------------|---------------|--------------|---------------|------------|------------|-------------|
|                                       |              |                |                |                 |               |               |              |               |            |            |             |
|                                       |              |                |                |                 |               |               |              |               |            |            |             |
|                                       | ·            |                |                |                 |               |               |              |               |            |            |             |
|                                       | ;            |                |                |                 |               |               |              |               |            |            |             |
|                                       | -            |                |                |                 |               |               |              |               |            |            | ,           |
|                                       |              |                |                |                 |               |               |              |               |            |            |             |
|                                       |              |                | · · · <u> </u> |                 | (             | ·             |              |               |            |            | · · · · · · |
|                                       |              |                | •              |                 |               |               |              |               |            |            |             |
|                                       |              |                |                |                 |               |               |              |               |            |            |             |
|                                       | / <u>-</u> . |                |                |                 |               |               | ~            |               |            |            |             |
|                                       |              |                |                |                 |               |               |              |               |            |            |             |
|                                       |              |                |                |                 |               |               |              |               |            |            |             |
|                                       |              |                |                |                 |               |               |              |               |            |            |             |
|                                       |              |                |                |                 |               |               |              |               |            |            | Z           |
|                                       |              |                |                |                 |               |               |              |               |            |            |             |
|                                       |              |                | _              |                 |               |               |              |               |            |            | 1           |
|                                       |              |                | /              |                 |               |               |              |               |            |            | L           |
|                                       |              |                |                |                 |               |               |              |               |            |            |             |
| · · · · · · · · · · · · · · · · · · · |              |                |                |                 |               |               |              |               |            |            |             |
| · · ·                                 |              |                |                |                 |               |               |              |               |            |            |             |
| -                                     | · •          |                |                |                 |               |               |              |               |            |            |             |
|                                       | •            |                | _              |                 |               |               |              |               |            |            |             |
|                                       |              |                |                |                 |               |               |              |               |            |            |             |
|                                       | -            |                |                |                 |               |               |              |               |            |            |             |
|                                       |              |                |                |                 |               |               |              |               |            |            |             |
|                                       | p            |                |                |                 |               |               |              | <u> </u>      |            |            |             |

|            | Table 9. Discriminant function analysis of biomass p<br>develop the discriminant function and then testing it or | narameters using data classified as whale or non-whale to<br>additional observations. The variables used were CPK, |   |
|------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|---|
|            |                                                                                                                  |                                                                                                                    |   |
| f          |                                                                                                                  |                                                                                                                    |   |
| g træver   |                                                                                                                  |                                                                                                                    |   |
|            | 8                                                                                                                |                                                                                                                    |   |
| <b>J</b> , | с <b></b>                                                                                                        |                                                                                                                    |   |
| 1          |                                                                                                                  |                                                                                                                    | 1 |
| ,<br>}     |                                                                                                                  |                                                                                                                    |   |
|            |                                                                                                                  |                                                                                                                    | 1 |
|            |                                                                                                                  |                                                                                                                    |   |
| ()         |                                                                                                                  |                                                                                                                    |   |
|            |                                                                                                                  |                                                                                                                    |   |
|            |                                                                                                                  |                                                                                                                    | 4 |
|            |                                                                                                                  |                                                                                                                    |   |
|            |                                                                                                                  |                                                                                                                    | ł |
| 2          |                                                                                                                  |                                                                                                                    |   |
| · .        |                                                                                                                  |                                                                                                                    | i |
| , •        |                                                                                                                  |                                                                                                                    |   |
|            |                                                                                                                  |                                                                                                                    |   |
|            | -                                                                                                                |                                                                                                                    |   |
| ·          |                                                                                                                  |                                                                                                                    |   |
|            |                                                                                                                  |                                                                                                                    | - |
| •          |                                                                                                                  |                                                                                                                    |   |
|            |                                                                                                                  |                                                                                                                    |   |
| - •        |                                                                                                                  |                                                                                                                    |   |
| <b>.</b>   |                                                                                                                  |                                                                                                                    |   |
| -          |                                                                                                                  |                                                                                                                    |   |
| •          | SEGC were excluded because the                                                                                   | ey had no matching copepod data                                                                                    |   |
|            | Variable entered CPK                                                                                             | · · · · · · · · · · · · · · · · · · ·                                                                              |   |
|            | <u> Иагіарь БТО</u>                                                                                              | * Maishe Emo                                                                                                       |   |
|            |                                                                                                                  |                                                                                                                    |   |
| ·          |                                                                                                                  |                                                                                                                    |   |
|            |                                                                                                                  |                                                                                                                    |   |
|            |                                                                                                                  |                                                                                                                    |   |
|            |                                                                                                                  |                                                                                                                    |   |
|            | REMOVE                                                                                                           | * ENTER                                                                                                            |   |
|            | $DF = 1  12$ $CPK \qquad 4  45$                                                                                  | * DF = 1 11<br>* 7 EUP 0.05                                                                                        |   |
|            |                                                                                                                  |                                                                                                                    |   |
|            |                                                                                                                  |                                                                                                                    |   |
|            |                                                                                                                  | · · · · · · · · · · · · · · · · · · ·                                                                              |   |
| L          |                                                                                                                  |                                                                                                                    |   |



device. For example, net estimates of biomass are derived from large volumes of water, but acoustic estimates are from a smaller volume ( $200 \text{ m}^3$  or more for nets and  $60\text{--}100 \text{ m}^3$  for acoustic samples).

The estimated range of error associated with target strength is about  $\pm 3$  dB (between models and measured values for the same size target). This is equivalent to a product/ quotient factor of 2 (or 1/2) times the acoustically estimated biomass. Our experience with a large variety of horizontal and vertical net haul replicates indicates that a product/ quotient factor of 1 to several times net catch biomasses is commonly encountered

1.-

ł

in distribution of copepods observed in the frontal region of this small scale study may represent examples of both dispersing and concentrating factors dominating to different degrees.

Evidence for right whales modifying their behavior in response to changes in scale factors of copepod patches was examined by spectral analysis of the hydroacoustic data

| · · · · · · · · · · · · · · · · · · · |                                                             |
|---------------------------------------|-------------------------------------------------------------|
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
| •.                                    |                                                             |
|                                       |                                                             |
| Ϋ́                                    |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
| 4                                     |                                                             |
|                                       |                                                             |
| b                                     |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
| <u>*</u>                              |                                                             |
|                                       |                                                             |
| £                                     |                                                             |
|                                       |                                                             |
| ·                                     |                                                             |
|                                       |                                                             |
|                                       |                                                             |
| 3                                     | 2                                                           |
| ahanana in dinastian (ahan            | when the share of the amiles the ship stands are            |
| changes in direction (show            | In by the shape of the cruise track as the ship stayed some |
| Hindowe A I - hoda                    | <u> </u>                                                    |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
| e '                                   |                                                             |
|                                       | r                                                           |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |
|                                       |                                                             |

| 19 <b>11</b>      |                                                                                                      |  |
|-------------------|------------------------------------------------------------------------------------------------------|--|
| <u>x</u>          |                                                                                                      |  |
| 1                 |                                                                                                      |  |
| 1-                |                                                                                                      |  |
| γ                 |                                                                                                      |  |
|                   |                                                                                                      |  |
| " <b> </b>        |                                                                                                      |  |
|                   |                                                                                                      |  |
|                   |                                                                                                      |  |
|                   |                                                                                                      |  |
|                   |                                                                                                      |  |
|                   |                                                                                                      |  |
| μ                 |                                                                                                      |  |
|                   |                                                                                                      |  |
|                   |                                                                                                      |  |
|                   |                                                                                                      |  |
|                   |                                                                                                      |  |
|                   |                                                                                                      |  |
|                   | 5                                                                                                    |  |
|                   |                                                                                                      |  |
|                   | (Euphausia superba) swarms from Elephant Island and Bransfield Strait. Special Issue 4 of Journal of |  |
| r                 | Crustacean Biology, pp. 16-44.                                                                       |  |
| t                 |                                                                                                      |  |
| 1                 |                                                                                                      |  |
|                   |                                                                                                      |  |
|                   |                                                                                                      |  |
|                   |                                                                                                      |  |
| ,<br>             |                                                                                                      |  |
|                   |                                                                                                      |  |
|                   |                                                                                                      |  |
| ₽ <u></u>         |                                                                                                      |  |
| , <i>₽`</i> —     |                                                                                                      |  |
| -                 |                                                                                                      |  |
|                   |                                                                                                      |  |
|                   |                                                                                                      |  |
|                   |                                                                                                      |  |
| , <u>*</u><br>* * |                                                                                                      |  |